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Velocity and Vorticity Distributions over an Oscillating Airfoil
Under Compressible Dynamic Stall

M. S. Chandrasekhara*
Naval Postgraduate School, Monterey, California 93943

and
S. Ahmed+

.MCA T Institute, San Jose, California 95127 7

Abstract A 7.62-cm-chord NACA 0012 airfoil was oscillated sinu
T HE velocity and vorticity fields around an oscillating soidally with its angle of attack varying as, a = 10 deg-10 deg

airfoil in compressible dynamic stall are reported. Phase sin wt at a reduced frequency [k = (sfc C'_] of 0.05 in a flow
averaged, two component laser velocimetry data were ob- with a freestream Mach number of 0.3. The details of the wind
tamed at a freestream Mach number of 0.3 and a reduced tunnel used are given in Ref. I. A standard two component (I L
frequency of 0.05. This is the first set of velocity data available and V) frequency shifted laser velocimeter was used for the
at a high Reynolds number (540,000) under compressible flow measurements. Optical encoders mounted on the drive pro-
conditions and it serves as a good database for development vided the pertinent time-dependent information. A novel ap-
and validation of computer codes. Of particular interest is the proach of freezing the encoder data when coincident U and I
formation of a separation bubble, which bursts coincidentally velocity samples were present served to provide reliable phase
with the formation of the dynamic stall vortex, adding an angle data, which were later ensemble averaged by sorting ino
extra degree of physical complexity to the problem. bins covering 3 deg in phase angle. The velocities were com-

puted for bins containing at least 50 samples. When this S
Contents condition was not satisfied, suitable interpolation methods

The performance of helicopters and the maneuverability of were used. if data were found in the neighboring bins. One tm

fixed wing aircraft is limited by dynamic stall and the gross polystyrene latex particles suspended in alcohol were used for

separation of the unsteady flow that accompanies it. The seeding the flow. Further documentation of the experimental

dynamic stall flowfield is a complicated combination of a details can be found in Ref. 2.

multitude of fluid dynamic effects that include tremendous Velocity Measurements in the Separation Bubble
fluid acceleraiioua aruuid zh, lcaýia, ed.- formation of
strong suction peaks; development of the local boundary layer Some interesting flow features can be seen in the variation
under strongly adverse pressure gradients; transition of the of the horizontal component of velocity U with phase angle o.
leading-edge laminar boundary layer, its separation, and reat- in Fig. 1. for different heights (y/c) at the streamwise location
tachment resulting in a separation bubble that grows and x/c =0.083. At y/c = 0.067, phase angle of 160 deg, a =6.6
eventually bursts just when the dynamic stall vortex forms; deg, the velocity drops rapidly as a separation bubble forms
under compressibility conditions (M>:0.3), formation of over the airfoil. (It should be noted that the flat portions of
shock(s) and the induced separation due to it; addition of large the distributions for y/c =0.067 and vlc = 0.083 are caused
amounts of coherent vorticity into the flow and its coalescence
into the dynamic stall vortex that later convects over the airfoil A Y/C = 0.200 Y'C = 0.150 X Y'C = 0.100
upper surface and interacts with the trailing edge separated + Y/C = 0.183 V Y/C = 0.133 0 Y'C = 0.083
flow that propagates toward the leading edge; and so on. The x YC = 0.167 H Y'C = DA17 9 YC = 0.067
complex interactions governing the physical problem have 4.0
hitherto made understanding the origin of dynamic stall and
attempts at modeling the flow very challenging. The study
being reported provides a comprehensive set of velocity data 3.0 0........... . ....... ." didAA " ........... . .... .
along with vorticity distributions derived from it, which can be ++ ++Q

used to model the flow. In addition, it also serves as a data-.
base to verify computational results and enables development 2.5 .......
of new codes.

p 2.0 ..
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.45 by the blockage of the beams close to the airfoil.) Since the
bubble is encountered later in the cycle at a higher y/c point,

zi .: the phase angle at which the drop occurs increases with yic.

3-0 However, at y/c values outside the bubble, the velocity distri--- 0•butions are parallel to each other. This leads to the conclusion
that the bubble height is 0.03 c-0.04 c above the airfoil upper
surface.

.15 6 An analysis of the corresponding vertical component of
velocity V showed rapid increases 'n the velocity at o = 200

3- deg, a = 13.4 deg. This is associated with bursting of the
2 separation bubble. It is worthwhile mentioning that the bubble

0 bursting is somewhat gradual and not as abrupt as is normally

perceived.

Vurticily Distributions
-. 15 The z component of vorticity was calculated from the mea-

sured U and V components of velocity by first fitting a cubic
spline curve to the data and interpolating the velocities in a

-. 30' grid at a resolution of 1.25 min, using a second-order central
-. 30 -. 15 0 .15 .30 .45 differencing scheme. Thus, the noise level in the distributions

X/C is expected to be high at about 20% of the local maximum 0
vorticity values (in both the positive and negative quantities).
The following discussion about the vorticity field should still

.45 be valid, especially before the dynamic stall vortex begins to
[ t v,•, convect because no discontinuities such as shocks were en-

-- -,•Lcountered within the measurement grid. Thus, the picture of
- &= the flowfield is also quantitatively valid up to the point where

6 =a the particles were able to follow the flow properly.
0M •Figure 2a shows that at 0 = 171 deg (ot = 8.44 deg), a region

.2m of clockwise vorticity has developed over the airfoil, just
around the location of the separation bubble, with a peak

W f vorticity of - 8 units in it. A region of counter-clockwise
7 66 vorticity could also be found above it, but the peak vorticity

\5. within it is only about 5 units. As the airfoil reaches an angle
2 3of attack of 10 deg (Fig. 2b) the clockwise vorticity has in-

creased to - I1 units, whereas the anticlockwise vorticity is •
--05 still at 5 units. The extent of the vortical region has grown to

about 2507o chord in both the x and y directions. As the airfoil
pitches to higher angles of attack, the vorticity should increase
steadily until the vortex begins to convect. Figure 2c shows
that at 0 = 198 deg, this is the case as the clockwise vorticity
has doubled to - 22 units, but the anticlockwise vorticity has

. only increased to about 10 units. Earlier experiments
3 

have •
--.30 -.05 .0.45 shown that the vortex begins to convect at around this phase

b)IC angle. The separation bubble also bursts around the same
b) angle of attack. Thus, a combined effect is felt by the airfoil,

which should be seen in its vorticity field. A calculation of the
.45 circulation 2 over the measurement region showed an increase

C Vuntil the stall vortex convection was initiated and dropped
-2• slightly beyond this angle of attack.

2 'SIM The study leads to the following conclusions.3 - -15IA

- 0 . 1) One of the salient features of the flow is the formation ofs - -sin

- O.M a separation bubble. This bubble bursts (opens up) just
.20 around the angie of attack at which and the location where the

-- 0-d dynamic stall vortex forms, complicating the flow physics.

2) The clockwise vorticity was found to increase in the flow
until the vortex begins to convect.
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